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ABSTRACT

Suppose that we are given a set of n elements e1, ..., e which are

to be arranged in some order. At each unit of time a request is made

to retrieve one of these elements — e~ being requested (independently

of the past) with probability P
1 , P~ > 0 , 

~ 
P~ = 1 . The cost of the

retrieval is taken to be the ordered position of the element requested .

The problem of interest is to determine the optima l ordering so as to

minimize the long run average cost. Clearly if the P~ were known

the optimal ordering would simply be to order the elements in decreasing~~ \ — ,

order of the P ‘s . In fact even if the P ’ s were unknown we could

do as well asymptotically by ordering the elements at each unit of time

in decreasing order of the number of previous requests for them. In

this paper we first consider the case in which the only memory allowed

at any time is the ordering of the elements at that time ; in other words,

the only type of reordering rules we allow are ones in which the reordered

permutation of elements at any time is only allowed to depend on the

present ordering and the position of the element requested . 
\We show that

the rule which always moves the requested element one closer’}to the front

of the line minimizes the average position of the element re4uested among

a wide class of rules for all probability vectors of the f~4m p
1 

= p

= • • •  ~ 
1 — p 

In fact, we establish this under a stronger2 n n — i
optimality condition — namely the criterion of stochásticaliy minimizing

the asymptotic position of the element requested .

We also consider the above problem under the previse that additional memory

is allowed. In particular we allow the decision—maker to utilize such

rules as “only make a change (according to some preassigned rule) if the
same element has been requested k times in a row.” We show that as k

approaches infinity we can do as well as if we knew the values of the P~
and in addition we show that the convergence is monotone .

\
‘4 i
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We then allow for the possibility of randomization. We first consider

policies which at every unit of time follow some given rule with probability

ci and do nothing (make no reordering) with probability 1 — ci ; and show

that their average costs are independent of ci . However if we allow

the randomization constant to be a function of the position of the element

requested (one instance would be a policy which when the element selected

is in position i moves it to the front with probability 
~~ 

and leaves

the ordering unchanged with probability 1 — ci ) then the average cost

depends on the sequence of randomization constants. Interestingly

enough this is not the case for the one—closer rule whose average cost

remains invariant under such randomization.

I.
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0. INTRODUCTION AND SUMMARY

Suppose that we are given a set of n elements e
1
, ..., e which

are to be arranged in some order. At each unit of time a request is made

to retrieve one of these elements — e . being requested (independently

of the past) with probability P~ ‘ 
> 0 , ~ P~ 1 . The cost cf the p

retrieval is taken to be the ordered position of the element requested. j
The problem of interest is to determine the optimal ordering so as

to minimize the long run average cost. Clearly if the P . were known

the optimal ordering would simply be to order the elements in decreasing

order of the P~ ’s . In fact even if the P~,’s were unknown we could

do as well asymptotically by ordering the elements at each unit of time

in decreasing order of the number of previous requests for them. However

the problem becomes more interesting if we do not allow such memory storage

as would be necessary for the above rule but rather restrict ourselves to

a more limited memory storage. In [ 5 ] the case was considered where the I’

only memory allowed at any time was the ordering of the elements at that

time ; in other words the only type of reordering rules allowed in 5 1

are ones in which the reordered permutation of elements at any time is

only allowed to depend on the present ordering and the position of the

element requested — we call such rules no—memory rules. A no—memory

rule was said to be optimal in ( S J if its average cost as a function of

the probability vector P is minimal among all rules for ~~~‘c r i  probability

vector P having 0 < P~ < 1 , i = 1, ..., n . Whereas it is not obvious

I _



2

that an optimal rule exists it was conjectured in ( 5 } that the rule which

always moves the requested element one position closer to the front (called

the transposition rule) is optimal . Though this conjecture was not proved

it was shown in 1 5 1 that the transposition rule always has a smaller

average cost than the one which moves the requested element to the front

*of the line .

In Section 1 of the paper we consider the above problem under the pre—

tnise that additional memory is allowed . In particular we allow the decision—

maker to utilize such rules as “only make a change (according to some

preassigned rule) if the same element has been requested k times in a row .”

We show that as k approaches infinity we can do as well as if we knew the

values of the P~ , and in addition we show that the convergence is monotone .

In Section 2 we allow for the possibility of randomization. We first

consider polIcies which at every trnit of time follow some given (nonmemory

and nonrandotnized) rule with probability i and do nothing (make no re—

ordering) with probability 1 — ~ ; and show that their average costs are
independent of ~ . However if we allow the randomization constant to be a

function of the position of the element requested (one instance would be a

policy which when the element selected is in position i moves it to the

fron t with probability i
1, 

and leaves the ordering unchanged with probability

1. — then the average cost depends on the sequence of randomization

constants. Interestingly enough this is not the case for the (conjectured

optimal) transposition rule whose average cost remains invariant under such

randomization .

*If the present ordering is e1,e2,e3,e4 
and element e3 is requested then

the transposition rule leads to the new ordering e1 e3,e1,e4 whereas the
front of the line rule leads to e 31 e1,e2 ,e4 .

_______  _________  

________  ~t
___________ — —‘ ~~~~~~
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In the final section we consider the original model where the only

rules allowed are ones whose reordering is based on the present ordering

and the position of the element requested . We show that the transpositIon

rule is optimal among a wide class of rules for all probability vectors

of the form ~ = 
1 p In fac t we establish this H

1 2 n n - l

under a stronger optimality condition — namely the criterion of stochastically

minimizing the asymptotic position of the element requested .

I
P

L

ti

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~
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I. K-IN-A-ROW POLICIES

Consider any rule R which atter each request reorders the list

solely as a function of the present ordering and the position of the element

requested and suppose now that we are allowed to follow the policy where

we only make a change in the list order (according to rule R) if the same

element has been requested k times in a row. (Such policies would require

two additional counters of memory space - one for keeping track of the

last element requested and the other keeping track of the number of times

in a row it had been requested.) Once an element has been requested k

times in a row we reorder the list according to R and then start over

again as far as waiting for another run of k identical requests.

The sequence of list orderings which result under the above policy

can most easily be analyzed as a semi-Markov process with the state at

any time being the ordering at that time and the epochs of transition

being the times at which a run of k identical requests have occurred .

We start by computing the probability that any given run of k identical

requests were all requests for element i

Proposition 1.1:

Given a sequence of independent multinomial trials — each resulting

in outcome i with probability p
~ , 

~~ 

1 . Then the probability

that a run of k
1 

successive trials all resulting in outcome number 1

occurs before any run of k~ successive i outcomes , i = 2, ..., n

equals

- p1)/(l -

n k~ k
i

i~ l 
~~ 

(1 - p
~
)1(l - 

~~~~ 

)

~~~~ ___ _________
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Proor :

~e rirst compute t~~~t~ expected number of ~~ i:~ tosses , ~.ill i t  E [T)

until .~ run or N successive heads occur ~~~~ the tos~~ s are u~dcp~ nd~ nt

and each la nds on ~iead s w i t h  ~rub ~ib i 1it v p . By cond1tioni :i~ on the

time of the first nonhead we obtain

E [ T ]  ~ (I - p)p J l ( j + E [ T ]~ + Np~
’

i—i

Solving the above for E(r ~ yields

N 4

EEl] N + P~ ~

and , simp L ifvi n~~, we obtain

= 
1 + p + 

~~~~~~~ -E [T1 N 
- 

N . 4
p p (1 — p)

Now consider the (infinite) sequence of ~ulti~ omia1 trials as spec if ~~~

in the statement of the proposition. Le~ us say that an i—suc cess occurs

whenever we obtain a run of k . successive i outcomes . Then ~‘v ren ewa i
1

theory the rate of i—successes is just I divided ~v the expected time

between i—successes and so the :ronort io~ of suCce ’SS ’ or are i

successes is (with probabi lity 1)

k . k .\
1 P~ 

( 1 — r.~ ! 
1 — p .  /

/ V l ,E(T )~~ 
L I

E (T~ ) 
~—l 

n k 4
p ~ (l — p.~~/(~l — p. ’)

j=l j .1

where T
1 

is the time hetwecLi i—successes.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
.
~~ ~~~~~~~ - .
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But each time a success (that is an i—success for any i) c : c~~r.~ t~’:cr-.’-

thing restarts itself and so the limiting proportion o~ su .~~e~ses r~~a~ ar ..

of type I must also equal the probability tha t an !—~~uc:e~~s Occurs ~er re

any j—success , j ~ i

Now in a semi—Markov process if we let “ . denote :h~ lim iting

probability of being in state I for the embedded Markov cnain wni ch o k s

at the process only when transitions occur and we let 
~~~~

. denote the mean

time until the next transition when in state I then the limit ing propor-

tion of time the state is I equals 
~ j~~j/ 

~~~ 
. Hence since in our

problem the mean time spent in any state is constant——it is just the

expected time to obtain a run of k requests for the same element——it

follows that the limiting proportion of time spent in each state is equal to

the limiting probabilities for the embedded Markov chain which only considers

the successive orderings when transitions (i.e., runs of k in a row) occur.

Thus it follows that the performance of the policy which uses rule R

only when there have been k requests in a row for the same element is

exactly the same as the performance of rule R in the case where the request

probabilities are no longer P1, ..., P but rather are now given by

~ (k) ~~~~~~~~ ~ (k) 
where

1 n

k / k
~ (k) P~ (1, — P

1
)/~ l —

kp (1 - ~~ )/(l - ~~ )j j j

The next lemma shows that as k increases the proportion of requests

(In the embedded chain) for the element having the largest request probability

increases to 1; among the remaining requests the proportion of those that are

~~~— 
_____

- 
-—
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for the element ooving the second largest request probabil ity also increases

to L , eta .

Ler~ia 1.

I f  P P > ... > P then1 2 n

(k)

as k~~~-~- , i = 1 ~ .. . , n .
~ (k)
L ~

j =i

Proof:

~e must show that

P~ (l - P.)/(1 -
1 1 1 

~~1 as k c c .

~ P~ (l - P~~)/(L -

3=i J 3 .3

By di vi d ing numerator and denom inator by P~/(l — we see that it

suffices to show that

1~ ~k/ 1 —( — ~- 1I as k A ~~ when P . > P . .\ P ~~/ ~1_ ~~kI 1
3 ,

(1/~~) k -
As the above equals 

k the result follows Lemma 1.3.
(l/P~) — 1

Lemma 1.3:

aX _ i
~ 0 as x ~~ when b >  a >  1

b’~ - 1

_ _ _  

1.
,

~~~~~- 
.

- - -~~~~~~~~~~~~~

_______________ — —
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Proof:

The derivative of aX — 1 will be negative If
bX _ l

x x .a m a  < b i no
x xa — l  b — 1

but this follows from the fact that bXZnb is an increasing function
- 1

of b when b > 1 , which is easily established upon differentiation . I I

Theorem 1.4:

Let R be any rule which moves the element requested strictly closer

to the front (unless it is already in the initial position in which case

it remains there) and leaves the relative ordering of the other elements

unchanged . Then under the policy which follows rule R only when there

have been k requests in a row for the same element the proportion of time

the element with the ~th largest request probability is in position j

goes to 1 as k goes to
I

— i

Proof:

Suppo~;e the elements are numbered so that > P 2 > • . .  > p

By Lemma 1.2 it follows that the proportion of reorderings that result

in element 1 being moved closer to the front of the line goes to 1 as k

becomes large. Hence it follows that the proportion of time that element

1 is in position 1 also goes to 1 as k gets larger. The remainder of

the argument is similar. I
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To prove this we first introduce the concepts of majorizatiort and

Schur func tions. We say the vector x (x1, . . .,  x )  majorizes the

vec tor v = (y 1, 
~~~ ~

‘n~ 
wri tten as x > ~~ if

X~~~~~ ~ Y(~) ~ 
= 1~ ~~~ - 1

and

n n

~ 

X~~~~ = 

1=1 ~(i)

whe r e X
(j )  Y (j) are the ~th largest values of x1, ..., x and

y1, . . . ,  y respectively.

The symmetric function f is said to be a Schur concave tunctiort if

f ( x ) < f ( v )  whenever x > . The following criterion for determining
m

if a function is Schur concave is due to Ostrowski.

Theorem: (Ostrowski)

A differentiable symmetric function f is Schur concave if and only if

/~ f ( )  af(x)\
(x

1 
— x2) 

— 

~‘~2 ) 
< 0 for all x

Proof:

See [ 2 1 ,  p .  47.

We are now ready f or

_ _ _ _ _  

I
- 

. ~~~~~~ h
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Proposj~~jo~ 1. 5:

The functi on

n
H( x ) = Y x~x 1 / (x + x ) 

, x . 0
i— i i~j 

J I

is a Schur concave function.

Proof:

3H( x )  
‘,

~ ~~~ 
x~ / (x . ~ x 1) + 

~ 

x T / (~~1 + x .)

~ 2 ~ x~ / ( x ~ +
i~l

There fore

/4H(x) ‘Ul(~ )\ 
‘I(x

i
_ x ,)  - = 2 (x~~~x ,) 

~~ 
x~ / (x

1
+ x ~~~ - V

= (x~ - L;j [(~~~ ) 
2 

- 
~~~~~~~~~~~~~~~ 

2] +

/ X 2 
\

2
j  

x
1 \2

~
“l ~~

>‘2 /  \x 1 + x ,)

As we see t ha t  t his  is norij’us it i.’e , the r e s uj  t follows from the Ost r owskj
theorem. I

I ’

_ _ _ _  _ _ _ _ _  

4
~~~~~ 

. .
~~~~ ~~~4 ~*ice~~~~~

—

- ~~~s . _ ~~~~~ — ‘--— -—.- —
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Theorem 1.6:

If the front of the line rule is only utilized when the same element

has been requested k t imes in a row then the average cost of this policy ,

namel y Y + , is a decreasing function of k
j— l i~ j -~ 

1 j

Proo f:

This result will follow from the previous proposition upon showing

that

~ (k+l) ~ (k+l) 
> 

(k)  (k )P 1 ~~~ 5 P
m

Assume without loss of generality that the elements are numbered so that

~~ 
> P which will imply the same order ings  fo r  the vec tor ~~(1~~

Let 

~ (Z )

= 

~~ 

~ m) —

and note that f rom Lemma 1.2 , we have tha t

> , i - 1, . . . ,  n .

As it is easy to establIsh (by Induction on j) that

~ P~~~~~, j 1 , ..., n
i—l i=j+l

the result follows.

—~~~~~~~~~~~~~~~ ---- ~~~~~~~~~~~~-—
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2. RANDOMIZATION

The reason that the k-in-a-row policies do better than the no—memory

reordering rules is that these latter rules make changes too frequently.

Fo r ins tance if  we were allowed per fect memory then the best rule would be to

order  the e lements  in decreas ing  order  of the number of reques ts  fo r  them .

He nce , a f t e r  a wh i l e , reorder ings  become infrequent — for  in stance if n = 4

and the t tal number o f  reques ts  f u r  e lements  1 th rough  ~ are at present

20 , 60 , 10 , ~ ‘ then the optimal ordering would be ta ,,e2,e1,e3 
and would

remain so for at least the next 10 periods regardless of the elements

requested in this time span.

Ano ther approach  to slow ing down changes in l i s t  order is to allow for

random ized pol icies. In particular consider any no—memory rule R and

consider the poli cy which when the element requested is in position i

follows the dictates of rule R with probability a . and leaves the

present ordering unchanged with probability 1 — a . , for  g iven

O 
~~~

. < 1 , i — 1, . . . ,  n . We first note that if the randomization value

a~ is the same for all I. , say a . a , then the average cost for the

randomized pol icy is the same as tha t  of the original rule R

Proposition 2 . 1 :

If a , i = 1, . . . ,  n then the average cost of the randomized

po licy is independent of a

Proof:

We can analyze the sequence of orderings as a semi—Markov process where

a t ransi t ion occurs whenever the outcome of the randomization resul ts  in

rule R being followed . As this occurs with probability a independent

_ _ _ _ _ _ _ _ _ _ _

_ _ _  
_
_______

~~f l .—.— S - a
— ~~~~~

—.- .- —*——----~ 
—~-— ——- 

— - ~~~~~~ .~ a-_.~~a—-—~~~—
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of the particular order it follows that the mean time spent in each state

during a visit is 1/a for every s t a t e .  Hence the l imi t ing  probabi li t ies

a re exac t ly  the same as those of the emi-edded Markov chain which considers 
S 

-

the order ings  onl y at t imes where R is followed . As these limiting

p robab i l i t ie s  are c lear l y the same as when ~ 1 the resul t  fo l l o w s .j ~

In general the average cost of a randomized policy based on th e rule R

will depend on the values of the . However an interesting exception is

whe n R is taken to be the (con jec tu red  op t ima l )  t ranspos i t ion  ru le .  For

th i s case we f i r s t  note the fo l lowing lemma which was also proved in 1 5 1
for the special case -

~~~~ 

1

Lemma 2 . 2 :

For the randomized policy based on the transposition rule and using

randomization constants ~~~. , I — 1, ..., n ,
1 r

(2 .1)  P~~~~ Pr (i 1, .... i i ~~ 1~ 
..., i )  - P1 Pr (i 1, ..., ~~~~~~~~ ...,

where i
~
, ..., i~ is any permutation of 1,2, ..., ti and Pr (i

1
, ..., i )

is the stationary probability that the list order is (i1, ..., i ) given

that the stated policy is employed .

Proof:

8y multiplying both sides of Equation (2.1) by we see that

(2.1) is equivalent to stating that rate at which the Markov chain goes

from any s tate  s to s ’ is equal to the rate  at which it goes from

s ’ to $ ; or in other  words , it st ates that  the Ma r kov chain is t ime

reversible. Now it is well—known that  a necessary and s u f f i c i e n t  condi t ion

- 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~ S . ~~~IT ~~~~
- -
~~~~~~ ~~~~~~~~~~~~~~

- 
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for t ime reversibilit y is that for any sequence of states s,s~ ,s , . .., s ’ , s

the t r a n s i t i o n  probabilities must  s a t i s fy  P 
l~ 1 2 —

s , s S , S S , S

~~“ 1 that this is the case is easily verified for thi s p .trticu— S

s,s S , S

lar  model .  (For ins tance  if n 3 and the sequence of s t a tes  is

(1, 2 , 3) , ( 2 , l , 3~ , ( 2 , 3 , l ) , ( 3 , 2 , l ) , ( 3 , 1, 2 ) , ( 1 , 3 , 2 ) , ( 1 , 2 , 3) the produc t of

the transition probab i l i t i e s  going f rom l e f t  to ri g h t  is

3 3 ~~— a
3
P~P P ~ whereas in the reverse d i re c t i o n

3 3 , ‘‘Iit is a
3P3

a2P3
i 3P~ cx,p ,a3

p
1
a7p 1 

— a7a3
P~ P~ P )  . 1 1

Since the stationary probabilities are obtained from the set of equations

( 2 . 1) which do not depend on the • we have

Theore m 2 . 3 :

The average cost of any randomized pol icy based on the transposition

rule is independent of the random iza t ion cons tan ts a . .

_ _ _ _ _ _  S - - _ _ _ _ _ _  
I~ J1 l~!~~~~~~ 

- -



lb

) .  TRAN Si’~~SI  r1~~N ~uL~: I)PTl~~ L ITY ~hI~ N p = 
~ 

p = 
- 

~ , i — 2 , . . . ,  n
_ _ _  _ _  

1 ‘ n - I  
_ _ _ _ _ _ _

In tnIs sect i - in  we shall suppose that P
1 

= p , P 2 = ... — = : ~ 
= q

:~ .~en~~~r . t l  ~ti~icr m v  r u l e , I t  average cost can be obtained by analyzing the

Markov :hmi: ~ n ! states ‘where the state - it  an time corresponds to the

ordering at t h a t  t i m e . However for th~ P . -if the form above , as all of

the elements 2 through n are id en tic il as they have the same probability

of bein~ re lues ted ) we can obt a in the a v e r ag e  cos t  by anal yzing the much

stm~ ler ~4arkov chain of  n states with the state being the position of

e emt ’ nt  1.

C o n s i d e r  the fo~~lowing r e s t r ic t e d  c lass  of rules which when an element

is requested and found in ~o s l ti o n  i , move the  e lement  to p o s i t i o n  j1
m d  leave the reiative positi ons of the other elements unchanged . In

add i t i o n  we s u p p ose  t h a t  j
~ 

< i f r  i > 1 , j1 1 and j
~ 

>

i — 2 n . The set 
~
j. • i — 1 n} characterizes a rule in

this ci mss.

F~j r  a g iv en  r u l e  in the  above class l e t

k ( i )  = z ax  : ~ i }  .

In t h e r  wo rds , f o r  any  i , an element in any ~f the p o s i t i o n s

i , i + 1, . . . , i + k ( i )  wi l l , if  r e q u e s t e d , be moved to  i p o s i t i o n  less

than  or equal  to i

For i s p e c i f i e d  r u l e  in th e  above c l m s s  l e t  us denote th~ s L i t i on a r . -

p r o b a b i l i t i e s  when t h i s  r u l e  is emp loy ed  by
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= Pr ~e1 is in position i- , I 1, ..., n

S
1 ~~ 

Pr ( e
1 is in a position > i} , i = 0 , 1, ..., n - 1 . I

j=i+l

Before writing down the steady state equations it may be worth noting

the fol lowing:  
S

(i) Any element moves toward the back of the list at most one

position at a time .

(ii) If an element is in position i and neither it nor any of

the elements in the following k(i) positions are requested

it will remain in position I .

(i i i )  Any element in one of the posi t ions i , i + 1, . . . ,  I + k ( i )

will be moved to a position < i if requested . S

The stead y sta te  probabilities can now easily be seen to be:

S
~ 

= Si+k(j) + (S~ — S i+k(j)) ( l  - p) + - S~ )q k(i) 
S

or 
S

S~ = ajS~~i 
+ (1 — a

~
)S .÷k(.) , 

i = 1, . . . ,  n — 1

(3.1) 
S = l , S = O  S

S where

(3.2 ) ai qk( i) + p

5?

a 5- 
_____
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Now cons ider  a spec ia l  ru le  of the above class , namely the tram -is— S

p o s i t i o n  ru le  wh i c h  has j .  — i — = , . .. , n , j1 1 . Let the

c o r r e s p o n d i n g  S~ be denoted  by 5 ’ f o r  the t r anspos i t ion  r ul e .  Then

f rom E q u a t i o n  (3 .1 )  we have , since k ( i )  = 1 , t ha t

+ pS~ ÷1
i p + q  P .

or , equivalently , 
S

S I 
— S~ = 

~~~ (5’ — 5’ )1+1 1 p i i—i

which , iterating, implies

S 

S! - = - .

Summing the above equations from r = 1, . . . ,  r we obtain

S~ - S~ = (S~ - S ! 1) [
~ 

+ .‘. + ( ) ~
] i + r < n

Now consider any other rule R of the considered class and let k(I) be

as defined for that rule. Now from the above we see that for the trans-

position rule

k (
Sj +k(j ) - S! = (S~ - S f 1 ) + . . .  + (

~
) )

or , equivalently

(3.3) S~ b .S~~1 + (1 — b i)Sj+k(.)

where

-. ~~~S-~~~ — - 

SSS S~~5S5- ~~~~~~~~~~
- 5 

- 

~—S ~~~~~~~~~~ S S5-~~5-5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~



- 
5 - - r I r ~~~~ _ ~~~~~~~~~~~~~~~~~~~~~~~~~ - 

19

(3.~~) b~ 
(g/p) + “. + (~j~~) k U )  

~ 1, . . .,  ~~ -
1 + (q / p)  + ... + (q/p)

and S’ 0 , S’ = 1 .n 0

We are now ready to prove

Theorem 3.1: 
5 

-

If p > 1/n , then  S~ < S . f o r  all I . S— 1~~~ I

If p < 1/n , then S~ > S . for all i . S— 
1~~~~~~ 1

P r o o f :

Consider the  case p > 1/n which is equivalen t to p > q and note

tha t in this case

1 1a
1 

= 1 - 

1 + ~~~ q 
~ 1 

~~~~q/p + • . .  + ( q / p ) k~~~ 
= b 1 .

Now define a Markov chain with states 0,1, ..., n and transition

probabilities

P = P  = 10,0 n,n

(3.5) cc . if i = i — 1
1. 

i — i , ..., n — l .13 
~l - c j  if i = i + k(i)

Let f
1 

denote the probability that this Markov chain ever enters state 0

given that  it s t a r t s  in s tate  i . Them-i f
1 

satisfies

= c .f11 + (1 - c i)f i +k(j) ~ = 1, ~ - 1

f — l  f — O

______________ ~~~~~~~~~~~~~~~~~~~~~~~ L



—

20

Hence , as it L~ -cel l  kn - i-~~ t h a t  the above se t  of equations has :i u n i q u e

s o l u t ion , i t  follows from (3.1) that if we take c . equal to a . f o r  all
1 1

i , then  f . w i l l  equa l  t h e  S of ru le  R , and if we let c. = b . ,1 j  1 1

then f . equals 5’ . Let X (a) and X (b) denote the state at time
1 1 r—

r of the Markov chain defined by (3 .5 )  when c~ equals  r e spec t ive ly a . and

Now , as P~X1(a) > j  X
0

(a) = i }  and P (X
1

(b ) > j X
0

(b)  i} are both

i nc reas ing  in i , fo r  all  j • and as

P~ K1
(a )  > j X0 (a)  = i} < P ( X

1
(b) > j  X

0
( a )  = i~

for all j  , it can be shown (see Theorem 4 of [6]) that

? {X ( a )  > j  X~~(a)  = i} < P (X r (b) > j X
0

(b )  = i~ .

Hence ,

= O } ~ PIX (b) = 0} for  all r

impl ying tha t

S . > 5 ’1 1

When p < 1/n , ther m a , < b
1 , 

and the above i nequa l i t y  is reversed .

Thus for all rules in the considered class , the asymp totic position

of element 1 will be stochastically larger (smaller) than it would be

under the transposition rule when p > 1/n (p < 1/n)

Now consider any cost function whose cost of requesting an element

in position i——call it g(i)——is an increasing function of i

Letting X denote the (asymptotic) position of element 1, we have that

the average expected cost can be expressed as



dl

E [cost) — pE [g~X)) + ( 1 — p) 
~~~~~~~~~~~~~~~~~~~~~~~~ — g(X)]

The above follows by conditionin g on chether or not element L is requested

and then  n o t i n g  thjt if e l emen t  1 is no t  r e qu e s t e d , then  any f the re-

maining n — 1 e~ ezit~nts are equall y l ike ly  to  be .  Hence ,

E ( c o s t ]  = (~ - E(g(X)~ + (1 - 
~~~~ n - i

and thus if p 1, n , the  expec t ed  cost  is m i n i m i z e d  by minimizing

E[g(X)) and if p < I ’ m by maximizing E [g (X)] . But as stocha sticallv

min imizing (maximizing) X is equivalent :o minimizin g (maximizing)

E [g(X)] , for every increasing fu nction g , it foli -ivs that the expected

cost is minimized by the transposition rule.

S

~~~
S 

- 
S.—~~~~~~~

——— -
S — S ~~ 
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